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Summary. The objective of restricted selection index is to 
enhance genetic change in one trait while restricting to 
zero change in a second trait. Linear programming is 
another, yet conceptually different, technique to maxi- 
mize one function while enforcing limits on others. The 
objective of this research was to compare restricted selec- 
tion index and linear programming in ability to maximize 
performance in one trait while limiting change in a sec- 
ond trait to zero. Results of a numerical study demon- 
strate that linear programming is a more effective method 
to limit correlated response than restricted selection in- 
dex. On average, both methods limited response in a 
correlated trait to zero. However, the squared deviation 
of actual response in the restricted trait from zero was 
smaller with linear programming than with restricted se- 
lection index. Response to selection in the unrestricted 
trait is greater with restricted selection index than with 
linear programming. 

Key words: Linear programming - Selection index - Se- 
lection responses 

Introduction 

Animal improvement has long depended on selection in- 
dex and related prediction methods. Nevertheless, unde- 
sirable genetic change in traits correlated with those 
characters targeted for improvement is common. For ex- 
ample, selection for milk yield in dairy cattle is usually 
accompanied by a decline in milk fat percent. To over- 
come this problem Kempthorne and Nordskog (/959) 
introduced the restricted selection index. The intent is to 
improve performance in one or more traits while restrict- 
ing correlated genetic change in others to zero. The solu- 
tion is based upon linear equality constraints as part of 

the computations involved in finding selection index 
weights. Comprehensive reviews of restricted selection 
have been presented by Harville (1975), Niebel and Van 
Vleck (/983) and Brascamp (1984). 

Of course there are other mathematical techniques for 
maximizing linear functions subject to constraints (or, as 
phrased here, restrictions). The most common of these is 
linear programming (LP). Long used by animal nutri- 
tionists to develop least-cost rations, LP has received 
only slight attention by breeders (McGilliard and Clay 
/983; Jansen and Wilton 1984; Sivarajasingam etal. 
1984; Wilcox et al. 1984; Armstrong et al. 1990). In each 
of those settings the goal of the LP was associated with 
economics; to either maximize profit of minimize semen 
cost. The use of LP to meet exclusively genetic goals has 
not yet been described. 

The objective of the present work was to determine 
which of the two strategies, restricted selection index or 
linear programming, is more likely to restrict genetic 
change in one trait while maximizing change in another. 
Restricted selection index (or, more generally, restricted 
best linear unbiased prediction) requires the imposition 
of restrictions on the mixed model equations (Lin 1990). 
The inherent computational difficulty of this strategy is 
prohibitive in large sets of data. Here, we intend to use LP 
to select individuals that maximize the average genetic 
value in one trait while constraining the average genetic 
value of a second trait to zero. The usual (unconstrained) 
selection index values for the two traits are the basis of 
these computations. Such a process would require little 
additional computing effort beyond the computation of 
genetic proofs and less effort than the construction of 
restricted index equations. The remaining question is 
whether or not the genetic goals of constraining genetic 
change through LP are met as efficiently as with restrict- 
ed selection. 
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Materials and methods 

Notation 

Although much has been written on selection index, restricted 
selection and linear programming, a brief introduction of nota- 
tion follows. To satisfy the objectives we simplify the problem to 
two traits: trait 1 being the trait to improve and trait 2, that to 
be restricted. Phenotypes, corrected for any nongenetic fixed ef- 
fects, can be represented with the following simple linear model: 

Yij = aij Jr- eij (1) 

where Yij is an observation on animal j (j = 1 . . . . .  n) for trait i 
(i = 1, 2), aij represents the additive genetic value of animal j for 
trait i and eli is a random residual for recordj of trait i. The mean 
of Yij is zero. Moreover, for all j, 

La2j Lg12 g22J 

Var~ela~=~ rl' r12~ = Ro; (2) 
Le2j_[ I_r12 r22J 

and 

VarVYlJ~:[ vii v 1 2 J = g o = G o + R  o. 
LY2jA LVx2 I)22 

Multiple trait sire evaluation 

The comparison of restricted selection and linear programming 
will be made through sire selection. Assume that progeny pheno- 
types are represented by model (1). The goal is then to select 
sires, based on their progeny means, to improve performance in 
trait 1 while restricting correlated change in trait 2 to zero. Our 
first task is prediction of breeding values of both traits for each 
ofq sires (i.e., predict Sink for trait m = 1, 2 and k = 1 . . . . .  q) from 
paternal half-sib progeny means. Define this prediction (denoted 
by the" as distinguished from the true breeding value) as: 

Sink = b lmYlk  "~ bamY2k (3) 

where -~ik is the phenotypic mean of p paternal half-sib progeny 
in trait i (i = 1, 2) of sire k being evaluated for trait m. The 
selection index weights (bi) satisfy 

t l l  t12~[bl l  btz]=l_~gu 012]  (4) 

~12 t22J  Lb21 b22 2[_012 g221 

for tll. = (vii, + 0.25 (p - 1) gii')/P for all i and i'. 
Thus, given the two progeny means, we can predict the 

breeding value of each sire for both traits (i.e., Stk and S2k for 
k =  1 . . . . .  q). 

Restricted selection index 

The objective is to find an index to improve trait 1 while restrict- 
ing the correlated response in trait 2 to zero. Define this restrict- 
ed index as: 

S~k = b~'21k + b~ Y2k (5) 
^R where Slk is the restricted index for trait I of sire k evaluated 

from the same progeny means of the index in (3). The restricted 
selection index weights (bi R) satisfy (Kempthorne and Nordskog 
1959): 

(6) 
t _ h A  0.5 912 0.5 ~]22 0 

where t u ,  t12, t22 are  as defined in (4). Thus, among a list of q 
sires, each with progeny means of both traits, a restricted index 
value can be computed and used as a selection criterion. This 
criterion affords improvement in trait 1 and, theoretically, no 
change in trait 2. 

Linear programming 

Linear programming is described here as an alternative to re- 
stricted selection index. We make use of the predictions of equa- 
tion (3) to choose sires that will maximize performance in trait I 
but limit change in trait 2 to zero. Specifically, for the q sires 
available for selection, our objective is to choose weights 
fk (k = 1 ... q) which maximize: 

Z fk Slk 
k 

subject to 

52 fk $2~ = 0; (7) 
k 

Z f k = l . 0 ;  and 
k 
l>_fk>_0 for all k 

The weights, fk, can be interpreted as frequencies of use for each 
of the candidate sires. 

A numerical study 

To compare restricted selection and linear programming we con- 
sider a small simulation study. Four different sire selection set- 
tings are considered, defined by population parameters and 
number of progeny per paternal half-sib group. In each case 
there are 100 candidate sires and two different selection criterion: 
select the top 4 of 100 available sires or select the top 8 of 100. 
Progeny means are simulated based on either 25 or 50 paternal 
half-sib progeny records. As for the population parameters, sev- 
eral are constant across all four simulation settings. Specifically, 

V~ = - 0.5 

for all simulated phenotypes. However, two different values of 
G o are considered, either 

I -~ E_00  74 or 000F7 
both of which correspond to a genetic correlation of -0.3.  

First, let us consider restricted selection. Records of 50 or 25 
progeny records, on both traits, are generated for 100 simulated 
sires with one of the two parameter sets. Next, prediction of g~k 
(k = 1 . . . .  ,100) (under index (5)) is made for each sire. Sires are 
ranked by their restricted index, and the top 4 or top 8 are 
selected. Next, we compute the average true breeding values for 
traits 1 and 2 of the top 4 or 8 sires. Ideally, the average true 
breeding value of trait 2 for the chosen sires is zero, but this will 
certainly not be the case. This process is replicated for a total of 
75 data sets of 100 sires each. 

The application of linear programming to restricted sire 
selection follows in a similar manner. The same simulated data 
used in restricted selection is analyzed with linear programming. 
Breeding values for each sire are estimated for each trait using 
index (3). These 200 values (100 sires x 2 traits) are then used 
in a linear program to find the weights (fk) which maximize 
52 fk Slk subject to 52 fk S2k = 0 and 52 fk = 1. Computation of 
k k k 
the weights was conducted with the spreadsheet Quattro Pro 
(1989, version 1.0). 
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The choice of sires under LP is quite different from that of 
truncation selection with a restricted index. For example, under 
restricted selection we set the number of selected sires prior to 
sire ranking (in this case 4 or 8 sires). Once chosen, each sire is 
used with equal frequency in the breeding of females. Our simple 
linear program is based on a different principle. Here we permit 
sires to be used in the breeding program with unequal frequency 
(defined here by fk)" What remains is the limit we may wish to 
impose on the frequency of sire utilization. 

If no limit is imposed on the value of fk, the LP will always 
solve by choosing two, and only two sires. Similarly, if we force 
the LP to return with 4 or 8 sires exactly, with no limits on the 
fk, two sires are chosen with 'reasonable' frequencies of use and 
those remaining sires have frequencies less than 0.001 (i.e., the 
remaining are not considered for use by the LP). As a compro- 
mise, to make the two systems of evaluation nearly comparable, 
we set the limits of fk to 0.25 >_ fk > 0 in the 4-sire case and to 
0.125 >_ fk > 0 in the 8-sire case. Any limits we might set can be 
interpreted as arbitrary. The values of 0.25 and 0.125 were cho- 
sen so as not to advantage LP over restricted selection in max- 
imizing the response to selection in trait 1. Though not identical 
to restricted selection, imposition of these limits helps to provide 
equitable comparisons of the two sire ranking procedures. 

Having solved for those weights, the weighted average of 
true breeding values for each trait is computed. That is, we 
compute 
Zf~ Slk and Zfk S2k for comparison with the similar values 
k k 
determined from restricted index selection. As before, this pro- 
cess is repeated on all of the 75 data sets. 

We compare the average true breeding values for restricted 
selection and LP from the results of the 75 data sets. Principal 
questions include: which selection scheme offers the greatest 
genetic change in trait 1 and which scheme is more likely to 
restrict change in trait 2 to zero? Moreover, we also estimate the 
average squared difference of change in trait 2 from zero to 
assess the precision of each method at restricting correlated 
genetic change. 

Results 

Tables 1 and 2 present results of the numerical study. A 
quick survey of these values leads to a general conclusion 
that both strategies, restricted selection index and LP, 
effectively limit correlated change in trait 2 as expected. 
Accordingly, we are concerned more with how consis- 
tently each selection method limits correlated response 
rather than the fact that, asymptotically, both converge 
toward zero genetic change in trait 2. For  this, a closer 
examination of standard errors and squared deviations is 
necessary. 

First consider Table 1. With 50 progeny per sire, the 
expected superiority of the selected group for trait 1 un- 
der restricted selection is 0.887 and 0.775 with top 4 and 
top 8 sire selection, respectively. With the accompanying 
standard errors, the observed response is not significantly 
different from that expected. Of the two competing meth- 
ods of selection, restricted selection index is lightly better 
than LP at increasing the level of trait 1. However, LP is 
better able to limit genetic change in trait 2 than restrict- 
ed selection index. This is particularly true when one 
examines the standard errors and squared deviations. In  
that case, LP is considerably more consistent (i.e., the 
correlated change in trait 2 is less variable under LP than 
with restricted selection) in limiting the correlated change 
in trait 2 than is restricted selection. 

The mean squared deviation for trait 2 (variation in 
response) is computed as {~  fk S2k -- 0} 2 for LP solutions 

k 

and averaged. Note that we are using true breeding val- 
ues of the 100 available sires. For  restricted selection this 

Table l. Response to selection (and standard errors) in traits I and 2 and variation in trait 2 response in populations with a heritability 
of 0.25 in trait 1 and 0.35 in trait 2 

Restricted selection Linear programming 

Select top 4 Select top 8 Min 4 sires Min 8 sires 

Estimated" Expected b Estimated Expected Estimated Estimated 

Response to selection 50 progeny per sire 

Trait 1 0.948 (0.022) 0.887 0.822 (0.016) 0.775 0.922 (0.020) 
Trait 2 --0.054 (0.030) 0.0 --0.029 (0.019) 0.0 --0.016 (0.012) 

Variation in response c 

Trait 2 0.072 0.029 0.013 

Response to selection 25 progeny per sire 

Trait i 0.808 (0.021) 0.806 0.719 (0.015) 0.704 0.779 (0.019) 
Trait 2 -0.043 (0.033) 0.0 --0.023 (0.025) 0.0 --0.021 (0.017) 

l/ariation in response 

Trait 2 0.087 0.053 0.032 

o.8o8 (o.o15) 
-o .ool  (o.olo) 

0.009 

0.704 (0.014) 
-o.o18 (o.o13) 

0.019 

" Estimated genetic change as a function of true breeding values 
b Expected genetic change under truncation selection 
~ Average value of {~k fk Szk--0}2 over the 75 simulated data sets 
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Table 2. Response to selection (and standard errors) in traits 1 and 2 and variation in trait 2 response in populations with a heritability 
of 0.35 in trait t and 0.25 in trait 2 

Restricted selection Linear programming 

Select top 4 Select top 8 Min 4 sires Min 8 sires 

Estimated a Expected b Estimated Expected Estimated Estimated 

Response to selection 

Trait 1 1,102 (0.023) 
Trait 2 0,045 (0.049) 

Variation in response c 

Trait 2 0,063 

Response to selection 

Trait 1 0.984 (0,028) 
Trait 2 0.053 (0.029) 

Variation in response 

Trait 2 0.065 

50 progeny per sire 

1,089 0,962 (0.017) 0,952 1.094 (0,023) 
0.0 0.021 (0.017) 0.0 --0.003 (0,011) 

0,025 0,010 

25 progeny per sire 

1,016 0,875 (0,018) 0,888 0,968 (0,023) 
0.0 0.032 (0.020) 0.0 --0.001 (0,013) 

0,970 (0,017) 
--0,007 (0.007) 

0,004 

0.861 (0.016) 
-0.008 (0.0it) 

0.031 0,012 0.009 

Estimated genetic change as a function of true breeding values 
b Expected genetic change under truncation selection 
c Average value of {~ fk S2k- 0}2 over the 75 simulated data sets 

value is computed as [(average S2k of the selected group) 
- 0 ]  2 averaged over the 75 data sets. The zero is included 
in this expression to reinforce the idea that the expected 
change in trait 2 is zero. 

In all cases, regardless of the population parameters 
or sample size of progeny numbers, LP provides a smaller 
mean squared deviation than restricted selection. A simi- 
lar observation is found in the comparison of standard 
errors. In general, the more progeny per sire (and hence, 
increased accuracy of prediction) the smaller the squared 
deviation from zero. 

Table 2 also illustrates the differences between LP and 
restricted selection. In this case, the trait to be improved 
has a higher heritability than the trait to be restricted. 
Regardless of the number of progeny per sire, LP  pro- 
vides a smaller mean change in trait 2 as well as a much 
reduced mean squared deviation. Standard errors of trait 
2 breeding value means are also much smaller under LP, 
indicative of a more consistent (i.e., smaller variance of 
correlated response) ability of LP  to limit correlated re- 
sponse than restricted selection. 

Discussion 

As the results of Tables 1 and 2 demonstrate, restricted 
selection is less likely to limit correlated response than a 
linear programming procedure using the usual (uncon- 
strained) selection index. This opinion is based, not on 
bias in prediction, but on the smaller mean squared devi- 
ation of the constrained trait from zero when comparing 

LP to restricted selection index. The LP procedure is 
consistently closer to zero change than its restricted selec- 
tion counterpart. 

Restricted selection does have the advantage of an 
increased response to selection on the trait of interest. In 
each of the populations examined in the simulation study, 
gains in trait 1 under LP selection were less than those 
with comparable restricted selection. Hence, in the ab- 
sence of an example with clearly defined economic 
weights for the two traits, a preference among the two 
alternative selection schemes may be a matter of opinion. 
An emphasis on maximal response in trait I while impos- 
ing a limit on a second trait would direct breeders to 
remain with restricted selection index. However, if the 
limit on a correlated trait is to be emphasized, at some 
reduction in response to selection in the trait of interest, 
then LP provides a reliable alternative. 

Linear programming has other technical advantages 
in its favor. First among these is computational simplici- 
ty. The prediction of restricted selection indices, particu- 
larly in models with unknown means that require the use 
of restricted best linear unbiased prediction (Quaas and 
Henderson 1976; Henderson 1984), demands the con- 
struction of more elaborate equations. Such equations 
are an augmentation of the multiple trait mixed model 
equations (Henderson and Quaas 1976) that are already 
difficult to construct and solve. Moreover, once con- 
structed and solved, this restricted index is, in a sense, 
'frozen'. Breeders who do not wish to use restricted selec- 
tion or who choose to restrict other or different traits 
could not make use of the published index. These breed- 
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ers would have to set up and solve their own mixed model 
equations for the restrictions they wish to make. LP offers 
a more flexible alternative because the unrestricted pre- 
dicted genetic values can be used as they are published in 
any restricted selection program. 

In our proposed procedure, LP  takes advantage of 
predictions of genetic value from the usual (or uncon- 
strained) mixed model equations. Such predictions could 
be based on single or multiple trait equations. Our  pres- 
ent simulation study uses the equivalent of multiple trait 
prediction. The LP is then constructed on the predicted 
genetic values. This procedure provides flexibility for 
breeders to customize the restricted selection program. 
Secondly, the additional computations required by the 
LP are potentially straightforward and easily accom- 
plished (even, as in this research, on commonly available 
spreadsheets for personal computers). 

In comparing the proposed LP procedure with re- 
stricted selection, one must insure that the methods are 
on equal footing. Recall, the objective function of the 
LP is to choose weights, fk(k = 1 . . . . .  q), such that 
52 fk Slk is a maximum subject to Z fk S2k = 0. TO insure 
k k 

that LP  and restricted selection index are compared 
equivalently (though clearly not identically), we limit the 
upper value of fk SO that no one sire can 'dominate'  the LP 
solution. As mentioned earlier, without limits on the solu- 
tions of fk the LP will only choose two sires. To permit 
equivalent comparisons, we set limits on the fk of (0.025) 
for the selection of 4 sires [and (0, 0.125) for the selection 
of 8 sires]. This limit has the effect of forcing a minimum 
of 4 (8) sires into the LP solution, with most solutions 
containing 5 (9) sires. 

In light of this upper limit on sire use, the result that 
restricted selection achieves higher selection response in 
trait 1 than LP is easily explained. The use of more sires 
(e.g., generally 5 for LP  against 4 for restricted selection) 
naturally leads to a decrease in the response to selection 
in trait 1. Likewise, permitting more sires into the solu- 
tion also allows LP to keep the correlated response in 
trait 2 closer to zero than restricted selection, although, 
this alone is not sufficient to explain the success of LP  in 
restricting genetic change. Variation in response of trait 2 
(see Tables I and 2) for LP  when selecting 4 sires is still 
smaller than the variation of response of trait 2 for re- 
stricted selection with 8 sires (a less narrow selection 
criterion). Hence, the simple LP strategy proposed re- 
mains a more reliable means of restricting correlated ge- 
netic change than restricted selection. 

This formulation of sire selection through LP can be 
done quite simply, yet it is not without disadvantages. If 
the final decision is to be how many units of semen to 
purchase or how many mates to allocate to each sire, the 
frequencies can be reinterpreted as fractions of the total 
purchase or allocation. Of course, one could change the 

linear programming procedure to one of integer pro- 
gramming; that is, force sire weights to reflect exact in- 
tegers of units of semen to purchase. Erba et al. (1991) 
have shown, however, that the additional effort of integer 
programming results in little improvement over the use of 
fractions in LP. The difficulty is in adapting this interpre- 
tation to dam selection problems. The selection of fe- 
males to remain in the herd or flock is usually on a yes or 
no basis. The frequency solutions of the LP are not 
amenable to such yes/no decisions. In this setting, re- 
stricted selection may be the only alternative for con- 
straining correlated response. 

In summary, we have seen that linear programming 
can be an effective genetic tool for restriction of genetic 
gain for a specified trait. Previous application of LP  to 
problems in animal breeding has emphasized maximiza- 
tion of profits or minimization of semen costs (Shanks 
and Freeman 1979; Wilcox et al. 1984). Although not 
addressed in this research, LP  could also be applied to 
other problems in animal improvement (e.g., the mini- 
mization of accumulated inbreeding over the course of a 
selection program, see Quinton et al. 1991). We now see 
that LP  can be a more effective (as defined by a reduction 
in the variance of correlated change in trait 2) means of 
constraining correlated response than traditional re- 
stricted selection index. LP is also computationally more 
attractive than restricted selection index. The somewhat 
cumbersome process of restricted selection can be re- 
placed with the relatively simple procedure of linear pro- 
gramming when constructing breeding programs under 
constraints. 
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